"Turf wars between microbes dictate how much carbon salt marshes store and how much methane they pump into the air."
"Alia Al-Haj strides down the half-kilometer boardwalk, a wagon full of power tools and PVC pipes in tow. Off to each side, a vast marsh stretches into the distance, the wet ground punctuated by tall sedges waving in the cool spring breeze. Al-Haj closes her eyes and takes in a deep breath of the salty, sulfury aroma.
“It’s really important to me being able to smell the marsh,” she says. “I know it may not always be there. That smell is something I think about a lot, how much I’ll miss it.”
For the past 35 years, scientists with the Smithsonian Environmental Research Center, including Al-Haj, have been coming here to the Global Change Research Wetland in coastal Maryland to conduct extensive long-term research. The scientists have turned the tidal marsh off the Chesapeake Bay into a giant experimental laboratory designed to simulate how marshes might respond to climate conditions decades into the future.
Tidal salt marshes are coastal guardians. They filter runoff, protect the shore against storm surges, and shelter wildlife. On a grander scale, they are incredibly effective buffers against climate change. Tidal marshes sequester carbon at a rate 10 times higher than even mature tropical rainforests."
Christian Elliott reports for Hakai magazine January 18, 2023.